Jumping Numbers on Algebraic Surfaces with Rational Singularities

نویسندگان

  • KEVIN TUCKER
  • Juha Heinonen
چکیده

In this article, we study the jumping numbers of an ideal in the local ring at rational singularity on a complex algebraic surface. By understanding the contributions of reduced divisors on a fixed resolution, we are able to present an algorithm for finding of the jumping numbers of the ideal. This shows, in particular, how to compute the jumping numbers of a plane curve from the numerical data of its minimal resolution. In addition, the jumping numbers of the maximal ideal at the singular point in a Du Val or toric surface singularity are computed, and applications to the smooth case are explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log geometry and multiplier ideals

I work in combinatorics, algebraic geometry, convex geometry and commutative algebra while staying informed on certain topics in category theory and ring theory. In particular, I focus on toric varieties and singularity theory. The study of toric varieties lies at the intersection of combinatorics, algebraic geometry, convex geometry and integer programming. There is a correspondence between ce...

متن کامل

Jumping Number Contribution on Algebraic Surfaces with an Isolated Rational Singularity

Given an ideal in the local ring at a rational surface singularity, we define what it means for a collection of exceptional divisors on a fixed log resolution to critically contribute a jumping number. This is shown to be a numerical property of the collection, and can be used to give an explicit algorithm for finding all of the jumping numbers of the ideal. In addition, the jumping numbers of ...

متن کامل

Rational Singularities, with Applications to Algebraic Surfaces and Unique Factorization

§ o. Some terminology and notation . 196 198 I. Applications to the birational theory of surfaces · . . .. . .. .. . . . . .. . . . 199 § I. Birational behavior of rational singularities . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . 199 § 2. Resolution of singularities by quadratic transformations and normalization (method of Zariski) . . . . . . . . . . . . . . ...

متن کامل

An E cient Surface Intersection Algorithm based on Lower Dimensional Formulation Shankar

We present an e cient algorithm to compute the intersection of algebraic and NURBS surfaces. Our approach is based on combining the marchingmethods with the algebraic formulation. In particular, we propose a matrix representation for the intersection curve and compute it accurately using matrix computations. We present algorithms to compute a start point on each component of the intersection cu...

متن کامل

An E cient Surface Intersection Algorithm based on Lower Dimensional Formulation

We present an e cient algorithm to compute the intersection of algebraic and NURBS surfaces Our approach is based on combining the marching methods with the algebraic formulation In particular we use a matrix representation of the intersection curve and compute it accurately using matrix computations We also present algorithms to compute a start point on each component of the intersection curve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008